Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems
نویسندگان
چکیده
We describe an approach to find an initial approximation to the thermal properties of soil horizons. This technique approximates thermal conductivity, porosity, unfrozen water content curves in horizons where no direct temperature measurements are available. To determine physical properties of ground material, optimization-based inverse techniques are employed to fit the simulated temperatures to the measured ones. Two major ingredients of these techniques are an algorithm to compute the soil temperature dynamics and a procedure to find an initial approximation to the ground properties. In this article we show how to determine the initial approximation to the physical properties and present a new finite element discretization of the heat equation with phase change to calculate the temperature dynamics in soil. We successfully apply the proposed algorithm to recover the soil properties for the Happy Valley site in Alaska using oneyear temperature dynamics. The determined initial approximation is utilized to simulate the temperature dynamics over several consecutive years; the difference between simulated and measured temperatures lies within uncertainties of measurements.
منابع مشابه
Estimating the Saturated Hydraulic Conductivity of Soil Using Gene Expression Programming Method and Comparing It with the Pedotransfer Functions
Saturated hydraulic conductivity of soil is an important physical property of soil that affects water movement in soil, Since the measurement of saturated hydraulic conductivity by direct methods in the field or in the laboratory is hard, time-consuming and costly, the indirect methods are being used.The aim of this study is to estimate the saturated hydraulic conductivity from other soil prope...
متن کاملParameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code
Knowledge of soil hydraulic and thermal properties is essential for studies involving the combined effects of soil temperature and water input on water flow and redistribution processes under field conditions. The objective of this study was to estimate the parameters characterizing these properties from a transient water flow and heat transport field experiment. Real-time sensors built by the ...
متن کاملOptimization of Thermal Instability Resistance of FG Flat Structures using an Improved Multi-objective Harmony Search Algorithm
This paper presents a clear monograph on the optimization of thermal instability resistance of the FG (functionally graded) flat structures. For this aim, two FG flat structures, namely an FG beam and an FG circular plate, are considered. These structures are assumed to obey the first-order shear deformation theory, three-parameters power-law distribution of the constituents, and clamped bounda...
متن کاملIndirect estimation of soil thermal properties and water flux using heat pulse probe measurements: Geometry and dispersion effects
[1] Traditionally, analytical solutions for heat transport in soils have been used in combination with heat pulse probe (HPP) measurements to estimate soil thermal properties. Although the analytical method has resulted in accurate estimation of soil thermal properties, we suggest that parameter estimation using inverse modeling (IM) provides new and unique opportunities for soil thermal charac...
متن کامل